↓ Skip to main content

PLOS

Expansion of Human and Murine Hematopoietic Stem and Progenitor Cells Ex Vivo without Genetic Modification Using MYC and Bcl-2 Fusion Proteins

Overview of attention for article published in PLOS ONE, August 2014
Altmetric Badge

Mentioned by

news
3 news outlets
blogs
2 blogs
twitter
2 X users
patent
9 patents
facebook
1 Facebook page

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
70 Mendeley
citeulike
1 CiteULike
Title
Expansion of Human and Murine Hematopoietic Stem and Progenitor Cells Ex Vivo without Genetic Modification Using MYC and Bcl-2 Fusion Proteins
Published in
PLOS ONE, August 2014
DOI 10.1371/journal.pone.0105525
Pubmed ID
Authors

Gregory A. Bird, Avital Polsky, Patricia Estes, Teri Hanlon, Haley Hamilton, John J. Morton, Jonathan Gutman, Antonio Jimeno, Brian C. Turner, Yosef Refaeli

Abstract

The long-term repopulating hematopoietic stem cell (HSC) population can self-renew in vivo, support hematopoiesis for the lifetime of the individual, and is of critical importance in the context of bone marrow stem cell transplantation. The mechanisms that regulate the expansion of HSCs in vivo and in vitro remain unclear to date. Since the current set of surface markers only allow for the identification of a population of cells that is highly enriched for HSC activity, we will refer to the population of cells we expand as Hematopoietic Stem and Progenitor cells (HSPCs). We describe here a novel approach to expand a cytokine-dependent Hematopoietic Stem and Progenitor Cell (HSPC) population ex vivo by culturing primary adult human or murine HSPCs with fusion proteins including the protein transduction domain of the HIV-1 transactivation protein (Tat) and either MYC or Bcl-2. HSPCs obtained from either mouse bone marrow, human cord blood, human G-CSF mobilized peripheral blood, or human bone marrow were expanded an average of 87 fold, 16.6 fold, 13.6 fold, or 10 fold, respectively. The expanded cell populations were able to give rise to different types of colonies in methylcellulose assays in vitro, as well as mature hematopoietic populations in vivo upon transplantation into irradiated mice. Importantly, for both the human and murine case, the ex vivo expanded cells also gave rise to a self-renewing cell population in vivo, following initial transplantation, that was able to support hematopoiesis upon serial transplantation. Our results show that a self-renewing cell population, capable of reconstituting the hematopoietic compartment, expanded ex vivo in the presence of Tat-MYC and Tat-Bcl-2 suggesting that this may be an attractive approach to expand human HSPCs ex vivo for clinical use.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 3 4%
France 2 3%
United States 1 1%
Ireland 1 1%
Unknown 63 90%

Demographic breakdown

Readers by professional status Count As %
Researcher 20 29%
Student > Ph. D. Student 11 16%
Student > Master 9 13%
Student > Bachelor 6 9%
Student > Doctoral Student 5 7%
Other 10 14%
Unknown 9 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 29%
Agricultural and Biological Sciences 15 21%
Immunology and Microbiology 8 11%
Medicine and Dentistry 7 10%
Engineering 3 4%
Other 7 10%
Unknown 10 14%