↓ Skip to main content

PLOS

Stepwise Threshold Clustering: A New Method for Genotyping MHC Loci Using Next-Generation Sequencing Technology

Overview of attention for article published in PLOS ONE, July 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
97 Mendeley
Title
Stepwise Threshold Clustering: A New Method for Genotyping MHC Loci Using Next-Generation Sequencing Technology
Published in
PLOS ONE, July 2014
DOI 10.1371/journal.pone.0100587
Pubmed ID
Authors

William E. Stutz, Daniel I. Bolnick

Abstract

Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms.Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1) a "gray zone" where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci - Stepwise Threshold Clustering (STC) - that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus) samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 97 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Portugal 1 1%
Czechia 1 1%
South Africa 1 1%
Unknown 93 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 28%
Student > Master 17 18%
Researcher 16 16%
Student > Doctoral Student 11 11%
Student > Bachelor 5 5%
Other 9 9%
Unknown 12 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 50 52%
Biochemistry, Genetics and Molecular Biology 20 21%
Medicine and Dentistry 3 3%
Environmental Science 2 2%
Arts and Humanities 1 1%
Other 2 2%
Unknown 19 20%