↓ Skip to main content

PLOS

Cytokine Diversity in the Th1-Dominated Human Anti-Influenza Response Caused by Variable Cytokine Expression by Th1 Cells, and a Minor Population of Uncommitted IL-2+IFNγ- Thpp Cells

Overview of attention for article published in PLOS ONE, May 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
33 Mendeley
Title
Cytokine Diversity in the Th1-Dominated Human Anti-Influenza Response Caused by Variable Cytokine Expression by Th1 Cells, and a Minor Population of Uncommitted IL-2+IFNγ- Thpp Cells
Published in
PLOS ONE, May 2014
DOI 10.1371/journal.pone.0095986
Pubmed ID
Authors

Nan Deng, Jason M. Weaver, Tim R. Mosmann

Abstract

Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation. Cells that were initially IFNγ+ and either IL-2+ or IL-2- converged rapidly, containing similar proportions of IL-2-IFNγ+ and IL-2+IFNγ+ cells after culture and restimulation. Both phenotypes expressed Tbet, and similar patterns of mRNA. Thus variability of IL-2 expression in IFNγ+ cells appeared to be regulated more by short-term variability than by stable differentiated subsets. In contrast, heterogeneous expression of IFNγ in IL-2+ influenza-specific T cells appeared to be due partly to stable T cell subsets. After sorting, culture and restimulation, influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ cells maintained significantly biased ratios of IFNγ+ and IFNγ- cells. IL-2+IFNγ- cells included both Tbetlo and Tbethi cells, and showed more mRNA expression differences with either of the IFNγ+ populations. To test whether IL-2+IFNγ-Tbetlo cells were Thpp cells (primed but uncommitted memory cells, predominant in responses to protein vaccines), influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ T cells were sorted and cultured in Th1- or Th2-generating conditions. Both cell types yielded IFNγ-secreting cells in Th1 conditions, but only IL-2+IFNγ- cells were able to differentiate into IL-4-producing cells. Thus expression of IL-2 in the anti-influenza response may be regulated mainly by short term variability, whereas different T cell subsets, Th1 and Thpp, may contribute to variability in IFNγ expression.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 30%
Researcher 6 18%
Student > Master 3 9%
Student > Bachelor 2 6%
Student > Doctoral Student 2 6%
Other 6 18%
Unknown 4 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 27%
Immunology and Microbiology 8 24%
Medicine and Dentistry 4 12%
Biochemistry, Genetics and Molecular Biology 2 6%
Veterinary Science and Veterinary Medicine 1 3%
Other 3 9%
Unknown 6 18%