↓ Skip to main content

PLOS

Combination Therapy of Human Umbilical Cord Blood Cells and Granulocyte Colony Stimulating Factor Reduces Histopathological and Motor Impairments in an Experimental Model of Chronic Traumatic Brain…

Overview of attention for article published in PLOS ONE, March 2014
Altmetric Badge

Mentioned by

news
4 news outlets
blogs
2 blogs
twitter
1 X user
patent
2 patents
wikipedia
2 Wikipedia pages
googleplus
4 Google+ users

Citations

dimensions_citation
99 Dimensions

Readers on

mendeley
98 Mendeley
Title
Combination Therapy of Human Umbilical Cord Blood Cells and Granulocyte Colony Stimulating Factor Reduces Histopathological and Motor Impairments in an Experimental Model of Chronic Traumatic Brain Injury
Published in
PLOS ONE, March 2014
DOI 10.1371/journal.pone.0090953
Pubmed ID
Authors

Sandra A. Acosta, Naoki Tajiri, Kazutaka Shinozuka, Hiroto Ishikawa, Paul R. Sanberg, Juan Sanchez-Ramos, Shijie Song, Yuji Kaneko, Cesar V. Borlongan

Abstract

Traumatic brain injury (TBI) is associated with neuro-inflammation, debilitating sensory-motor deficits, and learning and memory impairments. Cell-based therapies are currently being investigated in treating neurotrauma due to their ability to secrete neurotrophic factors and anti-inflammatory cytokines that can regulate the hostile milieu associated with chronic neuroinflammation found in TBI. In tandem, the stimulation and mobilization of endogenous stem/progenitor cells from the bone marrow through granulocyte colony stimulating factor (G-CSF) poses as an attractive therapeutic intervention for chronic TBI. Here, we tested the potential of a combined therapy of human umbilical cord blood cells (hUCB) and G-CSF at the acute stage of TBI to counteract the progressive secondary effects of chronic TBI using the controlled cortical impact model. Four different groups of adult Sprague Dawley rats were treated with saline alone, G-CSF+saline, hUCB+saline or hUCB+G-CSF, 7-days post CCI moderate TBI. Eight weeks after TBI, brains were harvested to analyze hippocampal cell loss, neuroinflammatory response, and neurogenesis by using immunohistochemical techniques. Results revealed that the rats exposed to TBI treated with saline exhibited widespread neuroinflammation, impaired endogenous neurogenesis in DG and SVZ, and severe hippocampal cell loss. hUCB monotherapy suppressed neuroinflammation, nearly normalized the neurogenesis, and reduced hippocampal cell loss compared to saline alone. G-CSF monotherapy produced partial and short-lived benefits characterized by low levels of neuroinflammation in striatum, DG, SVZ, and corpus callosum and fornix, a modest neurogenesis, and a moderate reduction of hippocampal cells loss. On the other hand, combined therapy of hUCB+G-CSF displayed synergistic effects that robustly dampened neuroinflammation, while enhancing endogenous neurogenesis and reducing hippocampal cell loss. Vigorous and long-lasting recovery of motor function accompanied the combined therapy, which was either moderately or short-lived in the monotherapy conditions. These results suggest that combined treatment rather than monotherapy appears optimal for abrogating histophalogical and motor impairments in chronic TBI.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 98 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 3%
Spain 1 1%
United Kingdom 1 1%
Unknown 93 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 20 20%
Student > Ph. D. Student 17 17%
Student > Bachelor 12 12%
Student > Master 10 10%
Professor > Associate Professor 9 9%
Other 11 11%
Unknown 19 19%
Readers by discipline Count As %
Medicine and Dentistry 20 20%
Neuroscience 17 17%
Biochemistry, Genetics and Molecular Biology 9 9%
Agricultural and Biological Sciences 8 8%
Psychology 4 4%
Other 17 17%
Unknown 23 23%