↓ Skip to main content

PLOS

Spiegelzymes® Mirror-Image Hammerhead Ribozymes and Mirror-Image DNAzymes, an Alternative to siRNAs and microRNAs to Cleave mRNAs In Vivo?

Overview of attention for article published in PLOS ONE, January 2014
Altmetric Badge

Mentioned by

news
4 news outlets
twitter
7 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
29 Mendeley
Title
Spiegelzymes® Mirror-Image Hammerhead Ribozymes and Mirror-Image DNAzymes, an Alternative to siRNAs and microRNAs to Cleave mRNAs In Vivo?
Published in
PLOS ONE, January 2014
DOI 10.1371/journal.pone.0086673
Pubmed ID
Authors

Eliza Wyszko, Florian Mueller, Marta Gabryelska, Angelika Bondzio, Mariusz Popenda, Jan Barciszewski, Volker A. Erdmann

Abstract

With the discovery of small non-coding RNA (ncRNA) molecules as regulators for cellular processes, it became intriguing to develop technologies by which these regulators can be applied in molecular biology and molecular medicine. The application of ncRNAs has significantly increased our knowledge about the regulation and functions of a number of proteins in the cell. It is surprising that similar successes in applying these small ncRNAs in biotechnology and molecular medicine have so far been very limited. The reasons for these observations may lie in the high complexity in which these RNA regulators function in the cells and problems with their delivery, stability and specificity. Recently, we have described mirror-image hammerhead ribozymes and DNAzymes (Spiegelzymes®) which can sequence-specifically hydrolyse mirror-image nucleic acids, such as our mirror-image aptamers (Spiegelmers) discovered earlier. In this paper, we show for the first time that Spiegelzymes are capable of recognising complementary enantiomeric substrates (D-nucleic acids), and that they efficiently hydrolyse them at submillimolar magnesium concentrations and at physiologically relevant conditions. The Spiegelzymes are very stable in human sera, and do not require any protein factors for their function. They have the additional advantages of being non-toxic and non-immunogenic. The Spiegelzymes can be used for RNA silencing and also as therapeutic and diagnostic tools in medicine. We performed extensive three-dimensional molecular modelling experiments with mirror-image hammerhead ribozymes and DNAzymes interacting with D-RNA targets. We propose a model in which L/D-double helix structures can be formed by natural Watson-Crick base pairs, but where the nucleosides of one of the two strands will occur in an anticlinal conformation. Interestingly enough, the duplexes (L-RNA/D-RNA and L-DNA/D-RNA) in these models can show either right- or left-handedness. This is a very new observation, suggesting that molecular symmetry of enantiomeric nucleic acids is broken down.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Finland 1 3%
China 1 3%
Unknown 27 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 48%
Student > Ph. D. Student 5 17%
Other 2 7%
Student > Bachelor 2 7%
Professor 2 7%
Other 3 10%
Unknown 1 3%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 41%
Biochemistry, Genetics and Molecular Biology 9 31%
Chemistry 3 10%
Veterinary Science and Veterinary Medicine 1 3%
Computer Science 1 3%
Other 1 3%
Unknown 2 7%