↓ Skip to main content

PLOS

Differential Roles for EphA and EphB Signaling in Segregation and Patterning of Central Vestibulocochlear Nerve Projections

Overview of attention for article published in PLOS ONE, October 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
20 Mendeley
Title
Differential Roles for EphA and EphB Signaling in Segregation and Patterning of Central Vestibulocochlear Nerve Projections
Published in
PLOS ONE, October 2013
DOI 10.1371/journal.pone.0078658
Pubmed ID
Authors

Michelle R. Allen-Sharpley, Michelle Tjia, Karina S. Cramer

Abstract

Auditory and vestibular afferents enter the brainstem through the VIIIth cranial nerve and find targets in distinct brain regions. We previously reported that the axon guidance molecules EphA4 and EphB2 have largely complementary expression patterns in the developing avian VIIIth nerve. Here, we tested whether inhibition of Eph signaling alters central targeting of VIIIth nerve axons. We first identified the central compartments through which auditory and vestibular axons travel. We then manipulated Eph-ephrin signaling using pharmacological inhibition of Eph receptors and in ovo electroporation to misexpress EphA4 and EphB2. Anterograde labeling of auditory afferents showed that inhibition of Eph signaling did not misroute axons to non-auditory target regions. Similarly, we did not find vestibular axons within auditory projection regions. However, we found that pharmacologic inhibition of Eph receptors reduced the volume of the vestibular projection compartment. Inhibition of EphB signaling alone did not affect auditory or vestibular central projection volumes, but it significantly increased the area of the auditory sensory epithelium. Misexpression of EphA4 and EphB2 in VIIIth nerve axons resulted in a significant shift of dorsoventral spacing between the axon tracts, suggesting a cell-autonomous role for the partitioning of projection areas along this axis. Cochlear ganglion volumes did not differ among treatment groups, indicating the changes seen were not due to a gain or loss of cochlear ganglion cells. These results suggest that Eph-ephrin signaling does not specify auditory versus vestibular targets but rather contributes to formation of boundaries for patterning of inner ear projections in the hindbrain.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 5%
Unknown 19 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 30%
Researcher 4 20%
Other 2 10%
Student > Master 2 10%
Professor 1 5%
Other 2 10%
Unknown 3 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 55%
Neuroscience 3 15%
Biochemistry, Genetics and Molecular Biology 1 5%
Social Sciences 1 5%
Engineering 1 5%
Other 0 0%
Unknown 3 15%