↓ Skip to main content

PLOS

Drosophila KDEL Receptor Function in the Embryonic Salivary Gland and Epidermis

Overview of attention for article published in PLOS ONE, October 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
18 Mendeley
Title
Drosophila KDEL Receptor Function in the Embryonic Salivary Gland and Epidermis
Published in
PLOS ONE, October 2013
DOI 10.1371/journal.pone.0077618
Pubmed ID
Authors

Elliott W. Abrams, Yim Ling Cheng, Deborah J. Andrew

Abstract

Core components of the secretory pathway have largely been identified and studied in single cell systems such as the budding yeast S. cerevisiae or in mammalian tissue culture. These studies provide details on the molecular functions of the secretory machinery; they fail, however, to provide insight into the role of these proteins in the context of specialized organs of higher eukaryotes. Here, we identify and characterize the first loss-of-function mutations in a KDEL receptor gene from higher eukaryotes. Transcripts from the Drosophila KDEL receptor gene KdelR - formerly known as dmErd2 - are provided maternally and, at later stages, are at elevated levels in several embryonic cell types, including the salivary gland secretory cells, the fat body and the epidermis. We show that, unlike Saccharomyces cerevisiae Erd2 mutants, which are viable, KdelR mutations are early larval lethal, with homozygous mutant animals dying as first instar larvae. KdelR mutants have larval cuticle defects similar to those observed with loss-of-function mutations in other core secretory pathway genes and with mutations in CrebA, which encodes a bZip transcription factor that coordinately upregulates secretory pathway component genes in specialized secretory cell types. Using the salivary gland, we demonstrate a requirement for KdelR in maintaining the ER pool of a subset of soluble resident ER proteins. These studies underscore the utility of the Drosophila salivary gland as a unique system for studying the molecular machinery of the secretory pathway in vivo in a complex eukaryote.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 6%
Unknown 17 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 28%
Student > Master 3 17%
Student > Ph. D. Student 3 17%
Student > Bachelor 1 6%
Professor 1 6%
Other 1 6%
Unknown 4 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 39%
Biochemistry, Genetics and Molecular Biology 5 28%
Engineering 2 11%
Unknown 4 22%