↓ Skip to main content

PLOS

How Much Can Diptera-Borne Viruses Persist over Unfavourable Seasons?

Overview of attention for article published in PLOS ONE, September 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
40 Mendeley
Title
How Much Can Diptera-Borne Viruses Persist over Unfavourable Seasons?
Published in
PLOS ONE, September 2013
DOI 10.1371/journal.pone.0074213
Pubmed ID
Authors

Maud V. P. Charron, Thomas Balenghien, Henri Seegers, Michel Langlais, Pauline Ezanno

Abstract

Diptera are vectors of major human and animal pathogens worldwide, such as dengue, West-Nile or bluetongue viruses. In seasonal environments, vector-borne disease occurrence varies with the seasonal variations of vector abundance. We aimed at understanding how diptera-borne viruses can persist for years under seasonal climates while vectors overwinter, which should stop pathogen transmission during winter. Modeling is a relevant integrative approach for investigating the large panel of persistence mechanisms evidenced through experimental and observational studies on specific biological systems. Inter-seasonal persistence of virus may occur in hosts due to viremia duration, chronic infection, or vertical transmission, in vector resistance stages, and due to a low continuous transmission in winter. Using a generic stochastic modeling framework, we determine the parameter ranges under which virus persistence could occur via these different mechanisms. The parameter ranges vary according to the host demographic regime: for a high host population turnover, persistence increases with the mechanism parameter, whereas for a low turnover, persistence is maximal for an optimal range of parameter. Persistence in hosts due to long viremia duration in a few hosts or due to vertical transmission is an effective strategy for the virus to overwinter. Unexpectedly, a low continuous transmission during winter does not give rise to certain persistence, persistence barely occurring for a low turnover of the susceptible population. We propose a generic framework adaptable to most diptera-borne diseases. This framework allows ones to assess the plausibility of each persistence mechanism in real epidemiological situations and to compare the range of parameter values theoretically allowing persistence with the range of values determined experimentally.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
Unknown 39 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 28%
Student > Bachelor 7 18%
Other 4 10%
Student > Doctoral Student 4 10%
Student > Master 4 10%
Other 6 15%
Unknown 4 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 38%
Medicine and Dentistry 11 28%
Biochemistry, Genetics and Molecular Biology 3 8%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Veterinary Science and Veterinary Medicine 2 5%
Other 3 8%
Unknown 4 10%