↓ Skip to main content

PLOS

Membrane Phospholipid Fatty Acid Composition Regulates Cardiac SERCA Activity in a Hibernator, the Syrian Hamster (Mesocricetus auratus)

Overview of attention for article published in PLOS ONE, May 2013
Altmetric Badge

Mentioned by

news
2 news outlets

Citations

dimensions_citation
72 Dimensions

Readers on

mendeley
58 Mendeley
Title
Membrane Phospholipid Fatty Acid Composition Regulates Cardiac SERCA Activity in a Hibernator, the Syrian Hamster (Mesocricetus auratus)
Published in
PLOS ONE, May 2013
DOI 10.1371/journal.pone.0063111
Pubmed ID
Authors

Sylvain Giroud, Carla Frare, Arjen Strijkstra, Ate Boerema, Walter Arnold, Thomas Ruf

Abstract

Polyunsaturated fatty acids (PUFA) have strong effects on hibernation and daily torpor. Increased dietary uptake of PUFA of the n-6 class, particularly of Linoleic acid (LA, C18:2 n-6) lengthens torpor bout duration and enables animals to reach lower body temperatures (T(b)) and metabolic rates. As previously hypothesized, this well-known influence of PUFA may be mediated via effects of the membrane fatty acid composition on sarcoplasmic reticulum (SR) Ca(2+-)ATPase 2a (SERCA) in the heart of hibernators. We tested the hypotheses that high proportions of n-6 PUFA in general, or specifically high proportions of LA (C18:2 n-6) in SR phospholipids (PL) should be associated with increased cardiac SERCA activity, and should allow animals to reach lower minimum T(b) in torpor. We measured activity of SERCA from hearts of hibernating and non-hibernating Syrian hamsters (Mesocricetus auratus) in vitro at 35 °C. Further, we determined the PL fatty acid composition of the SR membrane of these hearts. We found that SERCA activity strongly increased as the proportion of LA in SR PL increased but was negatively affected by the content of Docosahexaenoic acid (DHA; C22:6 n-3). SR PL from hibernating hamsters were characterized by high proportions of LA and low proportions of DHA. As a result, SERCA activity was significantly higher during entrance into torpor and in torpor compared to inter-bout arousal. Also, animals with increased SERCA activity reached lower T(b) during torpor. Interestingly, a subgroup of hamsters which never entered torpor but remained euthermic throughout winter displayed a phenotype similar to animals in summer. This was characterized by lower proportions of LA and increased proportions of DHA in SR membranes, which is apparently incompatible with torpor. We conclude that the PUFA composition of SR membranes affects cardiac function via modulating SERCA activity, and hence determines the minimum T(b) tolerated by hibernators.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Unknown 57 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 28%
Researcher 9 16%
Student > Master 8 14%
Student > Postgraduate 7 12%
Student > Bachelor 5 9%
Other 8 14%
Unknown 5 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 41%
Biochemistry, Genetics and Molecular Biology 9 16%
Veterinary Science and Veterinary Medicine 4 7%
Environmental Science 4 7%
Neuroscience 4 7%
Other 8 14%
Unknown 5 9%