↓ Skip to main content

PLOS

A Systematic Survey of Expression and Function of Zebrafish frizzled Genes

Overview of attention for article published in PLOS ONE, January 2013
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
77 Mendeley
Title
A Systematic Survey of Expression and Function of Zebrafish frizzled Genes
Published in
PLOS ONE, January 2013
DOI 10.1371/journal.pone.0054833
Pubmed ID
Authors

Masataka Nikaido, Edward W. P. Law, Robert N. Kelsh

Abstract

Wnt signaling is crucial for the regulation of numerous processes in development. Consistent with this, the gene families for both the ligands (Wnts) and receptors (Frizzleds) are very large. Surprisingly, while we have a reasonable understanding of the Wnt ligands likely to mediate specific Wnt-dependent processes, the corresponding receptors usually remain to be elucidated. Taking advantage of the zebrafish model's excellent genomic and genetic properties, we undertook a comprehensive analysis of the expression patterns of frizzled (fzd) genes in zebrafish. To explore their functions, we focused on testing their requirement in several developmental events known to be regulated by Wnt signaling, convergent extension movements of gastrulation, neural crest induction, and melanocyte specification. We found fourteen distinct fzd genes in the zebrafish genome. Systematic analysis of their expression patterns between 1-somite and 30 hours post-fertilization revealed complex, dynamic and overlapping expression patterns. This analysis demonstrated that only fzd3a, fzd9b, and fzd10 are expressed in the dorsal neural tube at stages corresponding to the timing of melanocyte specification. Surprisingly, however, morpholino knockdown of these, alone or in combination, gave no indication of reduction of melanocytes, suggesting the important involvement of untested fzds or another type of Wnt receptor in this process. Likewise, we found only fzd7b and fzd10 expressed at the border of the neural plate at stages appropriate for neural crest induction. However, neural crest markers were not reduced by knockdown of these receptors. Instead, these morpholino knockdown studies showed that fzd7a and fzd7b work co-operatively to regulate convergent extension movement during gastrulation. Furthermore, we show that the two fzd7 genes function together with fzd10 to regulate epiboly movements and mesoderm differentiation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
France 1 1%
Unknown 75 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 26%
Researcher 10 13%
Student > Master 9 12%
Student > Doctoral Student 5 6%
Student > Bachelor 5 6%
Other 11 14%
Unknown 17 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 44%
Biochemistry, Genetics and Molecular Biology 16 21%
Medicine and Dentistry 4 5%
Unspecified 3 4%
Neuroscience 3 4%
Other 1 1%
Unknown 16 21%