↓ Skip to main content

PLOS

Metabolites of Ginger Component [6]-Shogaol Remain Bioactive in Cancer Cells and Have Low Toxicity in Normal Cells: Chemical Synthesis and Biological Evaluation

Overview of attention for article published in PLOS ONE, January 2013
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
45 Mendeley
Title
Metabolites of Ginger Component [6]-Shogaol Remain Bioactive in Cancer Cells and Have Low Toxicity in Normal Cells: Chemical Synthesis and Biological Evaluation
Published in
PLOS ONE, January 2013
DOI 10.1371/journal.pone.0054677
Pubmed ID
Authors

Yingdong Zhu, Renaud F. Warin, Dominique N. Soroka, Huadong Chen, Shengmin Sang

Abstract

Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4-M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC(50) of 24.43 µM in HCT-116 human colon cancer cells and an IC(50) of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC(50) values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4-M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC(50)s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 2%
United States 1 2%
South Africa 1 2%
Unknown 42 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 20%
Student > Master 9 20%
Student > Bachelor 6 13%
Researcher 5 11%
Other 2 4%
Other 6 13%
Unknown 8 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 22%
Chemistry 6 13%
Pharmacology, Toxicology and Pharmaceutical Science 4 9%
Biochemistry, Genetics and Molecular Biology 4 9%
Nursing and Health Professions 3 7%
Other 9 20%
Unknown 9 20%