↓ Skip to main content

PLOS

Microevolution of the Chromosomal Region of Acute Disease Antigen A (adaA) in the Query (Q) Fever Agent Coxiella burnetii

Overview of attention for article published in PLOS ONE, January 2013
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Readers on

mendeley
19 Mendeley
Title
Microevolution of the Chromosomal Region of Acute Disease Antigen A (adaA) in the Query (Q) Fever Agent Coxiella burnetii
Published in
PLOS ONE, January 2013
DOI 10.1371/journal.pone.0053440
Pubmed ID
Authors

Dimitrios Frangoulidis, Wolf D. Splettstoesser, Olfert Landt, Jasmin Dehnhardt, Klaus Henning, Angela Hilbert, Tilman Bauer, Markus Antwerpen, Hermann Meyer, Mathias C. Walter, Johannes K.-M. Knobloch

Abstract

The acute disease antigen A (adaA) gene is believed to be associated with Coxiella burnetii strains causing acute Q fever. The detailed analysis of the adaA genomic region of 23 human- and 86 animal-derived C. burnetii isolates presented in this study reveals a much more polymorphic appearance and distribution of the adaA gene, resulting in a classification of C. burnetii strains of better differentiation than previously anticipated. Three different genomic variants of the adaA gene were identified which could be detected in isolates from acute and chronic patients, rendering the association of adaA positive strains with acute Q fever disease disputable. In addition, all adaA positive strains in humans and animals showed the occurrence of the QpH1 plasmid. All adaA positive isolates of acute human patients except one showed a distinct SNP variation at position 431, also predominant in sheep strains, which correlates well with the observation that sheep are a major source of human infection. Furthermore, the phylogenetic analysis of the adaA gene revealed three deletion events and supported the hypothesis that strain Dugway 5J108-111 might be the ancestor of all known C. burnetii strains. Based on our findings, we could confirm the QpDV group and we were able to define a new genotypic cluster. The adaA gene polymorphisms shown here improve molecular typing of Q fever, and give new insights into microevolutionary adaption processes in C. burnetii.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Argentina 1 5%
Unknown 18 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 26%
Student > Master 3 16%
Researcher 2 11%
Student > Bachelor 2 11%
Professor 1 5%
Other 1 5%
Unknown 5 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 21%
Veterinary Science and Veterinary Medicine 2 11%
Biochemistry, Genetics and Molecular Biology 2 11%
Medicine and Dentistry 2 11%
Computer Science 1 5%
Other 2 11%
Unknown 6 32%