↓ Skip to main content

PLOS

Optimal Electrical Properties of Outer Hair Cells Ensure Cochlear Amplification

Overview of attention for article published in PLOS ONE, November 2012
Altmetric Badge

Mentioned by

blogs
1 blog

Readers on

mendeley
42 Mendeley
Title
Optimal Electrical Properties of Outer Hair Cells Ensure Cochlear Amplification
Published in
PLOS ONE, November 2012
DOI 10.1371/journal.pone.0050572
Pubmed ID
Authors

Jong-Hoon Nam, Robert Fettiplace

Abstract

The organ of Corti (OC) is the auditory epithelium of the mammalian cochlea comprising sensory hair cells and supporting cells riding on the basilar membrane. The outer hair cells (OHCs) are cellular actuators that amplify small sound-induced vibrations for transmission to the inner hair cells. We developed a finite element model of the OC that incorporates the complex OC geometry and force generation by OHCs originating from active hair bundle motion due to gating of the transducer channels and somatic contractility due to the membrane protein prestin. The model also incorporates realistic OHC electrical properties. It explains the complex vibration modes of the OC and reproduces recent measurements of the phase difference between the top and the bottom surface vibrations of the OC. Simulations of an individual OHC show that the OHC somatic motility lags the hair bundle displacement by ∼90 degrees. Prestin-driven contractions of the OHCs cause the top and bottom surfaces of the OC to move in opposite directions. Combined with the OC mechanics, this results in ∼90 degrees phase difference between the OC top and bottom surface vibration. An appropriate electrical time constant for the OHC membrane is necessary to achieve the phase relationship between OC vibrations and OHC actuations. When the OHC electrical frequency characteristics are too high or too low, the OHCs do not exert force with the correct phase to the OC mechanics so that they cannot amplify. We conclude that the components of OHC forward and reverse transduction are crucial for setting the phase relations needed for amplification.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 5%
United Kingdom 1 2%
Germany 1 2%
Belgium 1 2%
Unknown 37 88%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 31%
Researcher 7 17%
Professor > Associate Professor 6 14%
Student > Master 4 10%
Professor 1 2%
Other 3 7%
Unknown 8 19%
Readers by discipline Count As %
Engineering 12 29%
Medicine and Dentistry 7 17%
Agricultural and Biological Sciences 6 14%
Neuroscience 3 7%
Physics and Astronomy 2 5%
Other 4 10%
Unknown 8 19%