↓ Skip to main content

PLOS

Do Low-Mercury Terrestrial Resources Subsidize Low-Mercury Growth of Stream Fish? Differences between Species along a Productivity Gradient

Overview of attention for article published in PLOS ONE, November 2012
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
36 Mendeley
Title
Do Low-Mercury Terrestrial Resources Subsidize Low-Mercury Growth of Stream Fish? Differences between Species along a Productivity Gradient
Published in
PLOS ONE, November 2012
DOI 10.1371/journal.pone.0049582
Pubmed ID
Authors

Darren M. Ward, Keith H. Nislow, Carol L. Folt

Abstract

Low productivity in aquatic ecosystems is associated with reduced individual growth of fish and increased concentrations of methylmercury (MeHg) in fish and their prey. However, many stream-dwelling fish species can use terrestrially-derived food resources, potentially subsidizing growth at low-productivity sites, and, because terrestrial resources have lower MeHg concentrations than aquatic resources, preventing an increase in diet-borne MeHg accumulation. We used a large-scale field study to evaluate relationships among terrestrial subsidy use, growth, and MeHg concentrations in two stream-dwelling fish species across an in-stream productivity gradient. We sampled young-of-the-year brook trout (Salvelinus fontinalis) and Atlantic salmon (Salmo salar), potential competitors with similar foraging habits, from 20 study sites in streams in New Hampshire and Massachusetts that encompassed a wide range of aquatic prey biomass. Stable isotope analysis showed that brook trout used more terrestrial resources than Atlantic salmon. Over their first growing season, Atlantic salmon tended to grow larger than brook trout at sites with high aquatic prey biomass, but brook grew two-fold larger than Atlantic salmon at sites with low aquatic prey biomass. The MeHg concentrations of brook trout and Atlantic salmon were similar at sites with high aquatic prey biomass and the MeHg concentrations of both species increased at sites with low prey biomass and high MeHg in aquatic prey. However, brook trout had three-fold lower MeHg concentrations than Atlantic salmon at low-productivity, high-MeHg sites. These results suggest that differential use of terrestrial resource subsidies reversed the growth asymmetry between potential competitors across a productivity gradient and, for one species, moderated the effect of low in-stream productivity on MeHg accumulation.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 2 6%
Mexico 1 3%
Unknown 33 92%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 25%
Student > Master 8 22%
Student > Ph. D. Student 5 14%
Student > Doctoral Student 4 11%
Student > Bachelor 2 6%
Other 4 11%
Unknown 4 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 39%
Environmental Science 12 33%
Biochemistry, Genetics and Molecular Biology 1 3%
Chemistry 1 3%
Unknown 8 22%