↓ Skip to main content

PLOS

Comparison of Hematopoietic Stem Cells Derived from Fresh and Cryopreserved Whole Cord Blood in the Generation of Humanized Mice

Overview of attention for article published in PLOS ONE, October 2012
Altmetric Badge

Mentioned by

blogs
1 blog
facebook
1 Facebook page

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
38 Mendeley
Title
Comparison of Hematopoietic Stem Cells Derived from Fresh and Cryopreserved Whole Cord Blood in the Generation of Humanized Mice
Published in
PLOS ONE, October 2012
DOI 10.1371/journal.pone.0046772
Pubmed ID
Authors

Johanna Scholbach, Anett Schulz, Florian Westphal, Dietmar Egger, Anja Kathrin Wege, Ina Patties, Margarethe Köberle, Ulrich Sack, Franziska Lange

Abstract

To study the function and maturation of the human hematopoietic and immune system without endangering individuals, translational human-like animal models are needed. We compare the efficiency of CD34(+) stem cells isolated from cryopreserved cord blood from a blood bank (CCB) and fresh cord blood (FCB) in generating highly engrafted humanized mice in NOD-SCID IL2Rγ(null) (NSG) rodents. Interestingly, the isolation of CD34(+) cells from CCB results in a lower yield and purity compared to FCB. The purity of CD34(+) isolation from CCB decreases with an increasing number of mononuclear cells that is not evident in FCB. Despite the lower yield and purity of CD34(+) stem cell isolation from CCB compared to FCB, the overall reconstitution with human immune cells (CD45) and the differentiation of its subpopulations e.g., B cells, T cells or monocytes is comparable between both sources. In addition, independent of the cord blood origin, human B cells are able to produce high amounts of human IgM antibodies and human T cells are able to proliferate after stimulation with anti-CD3 antibodies. Nevertheless, T cells generated from FCB showed increased response to restimulation with anti-CD3. Our study reveals that the application of CCB samples for the engraftment of humanized mice does not result in less engraftment or a loss of differentiation and function of its subpopulations. Therefore, CCB is a reasonable alternative to FCB and allows the selection of specific genotypes (or any other criteria), which allows scientists to be independent from the daily changing birth rate.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Netherlands 1 3%
France 1 3%
Unknown 35 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 24%
Researcher 9 24%
Student > Doctoral Student 4 11%
Professor > Associate Professor 4 11%
Lecturer 3 8%
Other 7 18%
Unknown 2 5%
Readers by discipline Count As %
Medicine and Dentistry 11 29%
Agricultural and Biological Sciences 11 29%
Biochemistry, Genetics and Molecular Biology 6 16%
Nursing and Health Professions 2 5%
Unspecified 1 3%
Other 3 8%
Unknown 4 11%