↓ Skip to main content

PLOS

Functional Gene Polymorphisms in the Serotonin System and Traumatic Life Events Modulate the Neural Basis of Fear Acquisition and Extinction

Overview of attention for article published in PLOS ONE, September 2012
Altmetric Badge

Mentioned by

twitter
4 X users

Readers on

mendeley
122 Mendeley
citeulike
1 CiteULike
Title
Functional Gene Polymorphisms in the Serotonin System and Traumatic Life Events Modulate the Neural Basis of Fear Acquisition and Extinction
Published in
PLOS ONE, September 2012
DOI 10.1371/journal.pone.0044352
Pubmed ID
Authors

Andrea Hermann, Yvonne Küpper, Anja Schmitz, Bertram Walter, Dieter Vaitl, Jürgen Hennig, Rudolf Stark, Katharina Tabbert

Abstract

Fear acquisition and extinction are crucial mechanisms in the etiology and maintenance of anxiety disorders. Moreover, they might play a pivotal role in conveying the influence of genetic and environmental factors on the development of a (more or less) stronger proneness for, or resilience against psychopathology. There are only few insights in the neurobiology of genetically and environmentally based individual differences in fear learning and extinction. In this functional magnetic resonance imaging study, 74 healthy subjects were investigated. These were invited according to 5-HTTLPR/rs25531 (S+ vs. L(A)L(A); triallelic classification) and TPH2 (G(-703)T) (T+ vs. T-) genotype. The aim was to investigate the influence of genetic factors and traumatic life events on skin conductance responses (SCRs) and neural responses (amygdala, insula, dorsal anterior cingulate cortex (dACC) and ventromedial prefrontal cortex (vmPFC)) during acquisition and extinction learning in a differential fear conditioning paradigm. Fear acquisition was characterized by stronger late conditioned and unconditioned responses in the right insula in 5-HTTLPR S-allele carriers. During extinction traumatic life events were associated with reduced amygdala activation in S-allele carriers vs. non-carriers. Beyond that, T-allele carriers of the TPH2 (G(-703)T) polymorphism with a higher number of traumatic life events showed enhanced responsiveness in the amygdala during acquisition and in the vmPFC during extinction learning compared with non-carriers. Finally, a combined effect of the two polymorphisms with higher responses in S- and T-allele carriers was found in the dACC during extinction. The results indicate an increased expression of conditioned, but also unconditioned fear responses in the insula in 5-HTTLPR S-allele carriers. A combined effect of the two polymorphisms on dACC activation during extinction might be associated with prolonged fear expression. Gene-by-environment interactions in amygdala and vmPFC activation may reflect a neural endophenotype translating genetic and adverse environmental influences into vulnerability for or resilience against developing affective psychopathology.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 122 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Portugal 1 <1%
Germany 1 <1%
Australia 1 <1%
Sweden 1 <1%
United Kingdom 1 <1%
United States 1 <1%
Unknown 116 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 28 23%
Researcher 27 22%
Student > Master 21 17%
Student > Doctoral Student 10 8%
Other 6 5%
Other 18 15%
Unknown 12 10%
Readers by discipline Count As %
Psychology 45 37%
Neuroscience 16 13%
Agricultural and Biological Sciences 14 11%
Medicine and Dentistry 14 11%
Nursing and Health Professions 4 3%
Other 10 8%
Unknown 19 16%