↓ Skip to main content

PLOS

Role of the CCAAT-Binding Protein NFY in SCA17 Pathogenesis

Overview of attention for article published in PLOS ONE, April 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
34 Mendeley
Title
Role of the CCAAT-Binding Protein NFY in SCA17 Pathogenesis
Published in
PLOS ONE, April 2012
DOI 10.1371/journal.pone.0035302
Pubmed ID
Authors

Li-Ching Lee, Chiung-Mei Chen, Hao-Chun Wang, Hsiao-Han Hsieh, I-Sheng Chiu, Ming-Tsan Su, Hsiu-Mei Hsieh-Li, Chung-Hsin Wu, Guan-Chiun Lee, Guey-Jen Lee-Chen, Jung-Yaw Lin

Abstract

Spinocerebellar ataxia 17 (SCA17) is caused by expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) that is ubiquitously expressed in both central nervous system and peripheral tissues. The spectrum of SCA17 clinical presentation is broad. The precise pathogenic mechanism in SCA17 remains unclear. Previously proteomics study using a cellular model of SCA17 has revealed reduced expression of heat shock 70 kDa protein 5 (HSPA5) and heat shock 70 kDa protein 8 (HSPA8), suggesting that impaired protein folding may contribute to the cell dysfunction of SCA17 (Lee et al., 2009). In lymphoblastoid cells, HSPA5 and HSPA8 expression levels in cells with mutant TBP were also significantly lower than that of the control cells (Chen et al., 2010). As nuclear transcription factor Y (NFY) has been reported to regulate HSPA5 transcription, we focused on if NFY activity and HSPA5 expression in SCA17 cells are altered. Here, we show that TBP interacts with NFY subunit A (NFYA) in HEK-293 cells and NFYA incorporated into mutant TBP aggregates. In both HEK-293 and SH-SY5Y cells expressing TBP/Q(61~79), the level of soluble NFYA was significantly reduced. In vitro binding assay revealed that the interaction between TBP and NFYA is direct. HSPA5 luciferase reporter assay and endogenous HSPA5 expression analysis in NFYA cDNA and siRNA transfection cells further clarified the important role of NFYA in regulating HSPA5 transcription. In SCA17 cells, HSPA5 promoter activity was activated as a compensatory response before aggregate formation. NFYA dysfunction was indicated in SCA17 cells as HSPA5 promoter activity reduced along with TBP aggregate formation. Because essential roles of HSPA5 in protection from neuronal apoptosis have been shown in a mouse model, NFYA could be a target of mutant TBP in SCA17.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 3%
Unknown 33 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 24%
Researcher 4 12%
Student > Postgraduate 4 12%
Student > Master 4 12%
Professor 3 9%
Other 6 18%
Unknown 5 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 26%
Biochemistry, Genetics and Molecular Biology 8 24%
Neuroscience 3 9%
Medicine and Dentistry 3 9%
Immunology and Microbiology 1 3%
Other 3 9%
Unknown 7 21%