↓ Skip to main content

PLOS

Genetic and Non-Genetic Influences during Pregnancy on Infant Global and Site Specific DNA Methylation: Role for Folate Gene Variants and Vitamin B12

Overview of attention for article published in PLOS ONE, March 2012
Altmetric Badge

Mentioned by

policy
1 policy source

Readers on

mendeley
174 Mendeley
citeulike
1 CiteULike
Title
Genetic and Non-Genetic Influences during Pregnancy on Infant Global and Site Specific DNA Methylation: Role for Folate Gene Variants and Vitamin B12
Published in
PLOS ONE, March 2012
DOI 10.1371/journal.pone.0033290
Pubmed ID
Authors

Jill A. McKay, Alexandra Groom, Catherine Potter, Lisa J. Coneyworth, Dianne Ford, John C. Mathers, Caroline L. Relton

Abstract

Inter-individual variation in patterns of DNA methylation at birth can be explained by the influence of environmental, genetic and stochastic factors. This study investigates the genetic and non-genetic determinants of variation in DNA methylation in human infants. Given its central role in provision of methyl groups for DNA methylation, this study focuses on aspects of folate metabolism. Global (LUMA) and gene specific (IGF2, ZNT5, IGFBP3) DNA methylation were quantified in 430 infants by Pyrosequencing®. Seven polymorphisms in 6 genes (MTHFR, MTRR, FOLH1, CβS, RFC1, SHMT) involved in folate absorption and metabolism were analysed in DNA from both infants and mothers. Red blood cell folate and serum vitamin B(12) concentrations were measured as indices of vitamin status. Relationships between DNA methylation patterns and several covariates viz. sex, gestation length, maternal and infant red cell folate, maternal and infant serum vitamin B(12), maternal age, smoking and genotype were tested. Length of gestation correlated positively with IGF2 methylation (rho = 0.11, p = 0.032) and inversely with ZNT5 methylation (rho = -0.13, p = 0.017). Methylation of the IGFBP3 locus correlated inversely with infant vitamin B(12) concentration (rho = -0.16, p = 0.007), whilst global DNA methylation correlated inversely with maternal vitamin B(12) concentrations (rho = 0.18, p = 0.044). Analysis of common genetic variants in folate pathway genes highlighted several associations including infant MTRR 66G>A genotype with DNA methylation (χ(2) = 8.82, p = 0.003) and maternal MTHFR 677C>T genotype with IGF2 methylation (χ(2) = 2.77, p = 0.006). These data support the hypothesis that both environmental and genetic factors involved in one-carbon metabolism influence DNA methylation in infants. Specifically, the findings highlight the importance of vitamin B(12) status, infant MTRR genotype and maternal MTHFR genotype, all of which may influence the supply of methyl groups for DNA methylation. In addition, gestational length appears to be an important determinant of infant DNA methylation patterns.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 174 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Denmark 2 1%
United Kingdom 1 <1%
Colombia 1 <1%
Spain 1 <1%
United States 1 <1%
Unknown 168 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 38 22%
Researcher 26 15%
Student > Bachelor 22 13%
Other 19 11%
Student > Master 18 10%
Other 34 20%
Unknown 17 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 47 27%
Medicine and Dentistry 42 24%
Biochemistry, Genetics and Molecular Biology 28 16%
Psychology 7 4%
Nursing and Health Professions 4 2%
Other 20 11%
Unknown 26 15%