↓ Skip to main content

PLOS

A Two-Compartment Model of VEGF Distribution in the Mouse

Overview of attention for article published in PLOS ONE, November 2011
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
60 Mendeley
citeulike
1 CiteULike
Title
A Two-Compartment Model of VEGF Distribution in the Mouse
Published in
PLOS ONE, November 2011
DOI 10.1371/journal.pone.0027514
Pubmed ID
Authors

Phillip Yen, Stacey D. Finley, Marianne O. Engel-Stefanini, Aleksander S. Popel

Abstract

Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis--the growth of new microvessels from existing microvasculature. Angiogenesis is a complex process involving numerous molecular species, and to better understand it, a systems biology approach is necessary. In vivo preclinical experiments in the area of angiogenesis are typically performed in mouse models; this includes drug development targeting VEGF. Thus, to quantitatively interpret such experimental results, a computational model of VEGF distribution in the mouse can be beneficial. In this paper, we present an in silico model of VEGF distribution in mice, determine model parameters from existing experimental data, conduct sensitivity analysis, and test the validity of the model. The multiscale model is comprised of two compartments: blood and tissue. The model accounts for interactions between two major VEGF isoforms (VEGF(120) and VEGF(164)) and their endothelial cell receptors VEGFR-1, VEGFR-2, and co-receptor neuropilin-1. Neuropilin-1 is also expressed on the surface of parenchymal cells. The model includes transcapillary macromolecular permeability, lymphatic transport, and macromolecular plasma clearance. Simulations predict that the concentration of unbound VEGF in the tissue is approximately 50-fold greater than in the blood. These concentrations are highly dependent on the VEGF secretion rate. Parameter estimation was performed to fit the simulation results to available experimental data, and permitted the estimation of VEGF secretion rate in healthy tissue, which is difficult to measure experimentally. The model can provide quantitative interpretation of preclinical animal data and may be used in conjunction with experimental studies in the development of pro- and anti-angiogenic agents. The model approximates the normal tissue as skeletal muscle and includes endothelial cells to represent the vasculature. As the VEGF system becomes better characterized in other tissues and cell types, the model can be expanded to include additional compartments and vascular elements.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 3%
United States 2 3%
Switzerland 1 2%
Germany 1 2%
Poland 1 2%
Unknown 53 88%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 18%
Researcher 9 15%
Student > Master 8 13%
Student > Doctoral Student 5 8%
Student > Postgraduate 5 8%
Other 14 23%
Unknown 8 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 28%
Medicine and Dentistry 12 20%
Engineering 9 15%
Biochemistry, Genetics and Molecular Biology 5 8%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Other 7 12%
Unknown 7 12%