↓ Skip to main content

PLOS

Magnetic Resonance Spectroscopy Detectable Metabolomic Fingerprint of Response to Antineoplastic Treatment

Overview of attention for article published in PLOS ONE, October 2011
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
60 Mendeley
Title
Magnetic Resonance Spectroscopy Detectable Metabolomic Fingerprint of Response to Antineoplastic Treatment
Published in
PLOS ONE, October 2011
DOI 10.1371/journal.pone.0026155
Pubmed ID
Authors

Alessia Lodi, Sabrina M. Ronen

Abstract

Targeted therapeutic approaches are increasingly being implemented in the clinic, but early detection of response frequently presents a challenge as many new therapies lead to inhibition of tumor growth rather than tumor shrinkage. Development of novel non-invasive methods to monitor response to treatment is therefore needed. Magnetic resonance spectroscopy (MRS) and magnetic resonance spectroscopic imaging are non-invasive imaging methods that can be employed to monitor metabolism, and previous studies indicate that these methods can be useful for monitoring the metabolic consequences of treatment that are associated with early drug target modulation. However, single-metabolite biomarkers are often not specific to a particular therapy. Here we used an unbiased 1H MRS-based metabolomics approach to investigate the overall metabolic consequences of treatment with the phosphoinositide 3-kinase inhibitor LY294002 and the heat shock protein 90 inhibitor 17AAG in prostate and breast cancer cell lines. LY294002 treatment resulted in decreased intracellular lactate, alanine fumarate, phosphocholine and glutathione. Following 17AAG treatment, decreased intracellular lactate, alanine, fumarate and glutamine were also observed but phosphocholine accumulated in every case. Furthermore, citrate, which is typically observed in normal prostate tissue but not in tumors, increased following 17AAG treatment in prostate cells. This approach is likely to provide further information about the complex interactions between signaling and metabolic pathways. It also highlights the potential of MRS-based metabolomics to identify metabolic signatures that can specifically inform on molecular drug action.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Canada 1 2%
Unknown 58 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 20 33%
Student > Ph. D. Student 12 20%
Student > Master 7 12%
Other 4 7%
Student > Postgraduate 3 5%
Other 6 10%
Unknown 8 13%
Readers by discipline Count As %
Medicine and Dentistry 17 28%
Agricultural and Biological Sciences 10 17%
Chemistry 6 10%
Biochemistry, Genetics and Molecular Biology 5 8%
Physics and Astronomy 3 5%
Other 6 10%
Unknown 13 22%