↓ Skip to main content

PLOS

Understanding Variation in Transcription Factor Binding by Modeling Transcription Factor Genome-Epigenome Interactions

Overview of attention for article published in PLoS Computational Biology, December 2013
Altmetric Badge

Mentioned by

blogs
1 blog
twitter
9 X users

Readers on

mendeley
101 Mendeley
citeulike
8 CiteULike
Title
Understanding Variation in Transcription Factor Binding by Modeling Transcription Factor Genome-Epigenome Interactions
Published in
PLoS Computational Biology, December 2013
DOI 10.1371/journal.pcbi.1003367
Pubmed ID
Authors

Chieh-Chun Chen, Shu Xiao, Dan Xie, Xiaoyi Cao, Chun-Xiao Song, Ting Wang, Chuan He, Sheng Zhong

Abstract

Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES) cells, including DNA methylation (MeDIP-seq and MRE-seq), DNA hydroxymethylation (5-hmC-seq), and histone modifications (ChIP-seq). We discovered correlations of transcription factors (TFs) for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq) and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFκB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg).

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 101 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 4 4%
United States 4 4%
United Kingdom 1 <1%
Belgium 1 <1%
Unknown 91 90%

Demographic breakdown

Readers by professional status Count As %
Researcher 31 31%
Student > Ph. D. Student 24 24%
Student > Master 12 12%
Professor 9 9%
Professor > Associate Professor 7 7%
Other 15 15%
Unknown 3 3%
Readers by discipline Count As %
Agricultural and Biological Sciences 55 54%
Biochemistry, Genetics and Molecular Biology 23 23%
Computer Science 7 7%
Mathematics 3 3%
Engineering 3 3%
Other 5 5%
Unknown 5 5%