↓ Skip to main content

PLOS

Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

Overview of attention for article published in PLoS Computational Biology, June 2012
Altmetric Badge

Mentioned by

blogs
1 blog
twitter
5 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
83 Mendeley
Title
Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy
Published in
PLoS Computational Biology, June 2012
DOI 10.1371/journal.pcbi.1002545
Pubmed ID
Authors

David C. Sterratt, Martine R. Groen, Rhiannon M. Meredith, Arjen van Ooyen

Abstract

CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called "synaptic democracy". How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 83 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 3 4%
Switzerland 2 2%
Japan 2 2%
United Kingdom 2 2%
Portugal 1 1%
Spain 1 1%
Greece 1 1%
Unknown 71 86%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 31%
Researcher 21 25%
Student > Master 6 7%
Professor 5 6%
Student > Doctoral Student 4 5%
Other 9 11%
Unknown 12 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 31 37%
Neuroscience 19 23%
Engineering 6 7%
Mathematics 3 4%
Physics and Astronomy 3 4%
Other 6 7%
Unknown 15 18%