↓ Skip to main content

PLOS

Transient Calcium and Dopamine Increase PKA Activity and DARPP-32 Phosphorylation

Overview of attention for article published in PLoS Computational Biology, September 2006
Altmetric Badge

Mentioned by

googleplus
3 Google+ users
video
1 YouTube creator

Citations

dimensions_citation
98 Dimensions

Readers on

mendeley
116 Mendeley
citeulike
4 CiteULike
connotea
2 Connotea
Title
Transient Calcium and Dopamine Increase PKA Activity and DARPP-32 Phosphorylation
Published in
PLoS Computational Biology, September 2006
DOI 10.1371/journal.pcbi.0020119
Pubmed ID
Authors

Maria Lindskog, MyungSook Kim, Martin A Wikström, Kim T Blackwell, Jeanette Hellgren Kotaleski

Abstract

Reinforcement learning theorizes that strengthening of synaptic connections in medium spiny neurons of the striatum occurs when glutamatergic input (from cortex) and dopaminergic input (from substantia nigra) are received simultaneously. Subsequent to learning, medium spiny neurons with strengthened synapses are more likely to fire in response to cortical input alone. This synaptic plasticity is produced by phosphorylation of AMPA receptors, caused by phosphorylation of various signalling molecules. A key signalling molecule is the phosphoprotein DARPP-32, highly expressed in striatal medium spiny neurons. DARPP-32 is regulated by several neurotransmitters through a complex network of intracellular signalling pathways involving cAMP (increased through dopamine stimulation) and calcium (increased through glutamate stimulation). Since DARPP-32 controls several kinases and phosphatases involved in striatal synaptic plasticity, understanding the interactions between cAMP and calcium, in particular the effect of transient stimuli on DARPP-32 phosphorylation, has major implications for understanding reinforcement learning. We developed a computer model of the biochemical reaction pathways involved in the phosphorylation of DARPP-32 on Thr34 and Thr75. Ordinary differential equations describing the biochemical reactions were implemented in a single compartment model using the software XPPAUT. Reaction rate constants were obtained from the biochemical literature. The first set of simulations using sustained elevations of dopamine and calcium produced phosphorylation levels of DARPP-32 similar to that measured experimentally, thereby validating the model. The second set of simulations, using the validated model, showed that transient dopamine elevations increased the phosphorylation of Thr34 as expected, but transient calcium elevations also increased the phosphorylation of Thr34, contrary to what is believed. When transient calcium and dopamine stimuli were paired, PKA activation and Thr34 phosphorylation increased compared with dopamine alone. This result, which is robust to variation in model parameters, supports reinforcement learning theories in which activity-dependent long-term synaptic plasticity requires paired glutamate and dopamine inputs.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 116 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 3%
Brazil 2 2%
United Kingdom 2 2%
Sweden 1 <1%
France 1 <1%
South Africa 1 <1%
Japan 1 <1%
Poland 1 <1%
Unknown 104 90%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 31 27%
Researcher 29 25%
Professor 13 11%
Other 8 7%
Professor > Associate Professor 7 6%
Other 15 13%
Unknown 13 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 44 38%
Neuroscience 17 15%
Computer Science 10 9%
Psychology 10 9%
Mathematics 6 5%
Other 14 12%
Unknown 15 13%