↓ Skip to main content

PLOS

The Genomic Pattern of tDNA Operon Expression in E. coli

Overview of attention for article published in PLoS Computational Biology, June 2005
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
51 Mendeley
citeulike
2 CiteULike
Title
The Genomic Pattern of tDNA Operon Expression in E. coli
Published in
PLoS Computational Biology, June 2005
DOI 10.1371/journal.pcbi.0010012
Pubmed ID
Authors

David H Ardell, Leif A Kirsebom

Abstract

In fast-growing microorganisms, a tRNA concentration profile enriched in major isoacceptors selects for the biased usage of cognate codons. This optimizes translational rate for the least mass invested in the translational apparatus. Such translational streamlining is thought to be growth-regulated, but its genetic basis is poorly understood. First, we found in reanalysis of the E. coli tRNA profile that the degree to which it is translationally streamlined is nearly invariant with growth rate. Then, using least squares multiple regression, we partitioned tRNA isoacceptor pools to predicted tDNA operons from the E. coli K12 genome. Co-expression of tDNAs in operons explains the tRNA profile significantly better than tDNA gene dosage alone. Also, operon expression increases significantly with proximity to the origin of replication, oriC, at all growth rates. Genome location explains about 15% of expression variation in a form, at a given growth rate, that is consistent with replication-dependent gene concentration effects. Yet the change in the tRNA profile with growth rate is less than would be expected from such effects. We estimated per-copy expression rates for all tDNA operons that were consistent with independent estimates for rDNA operons. We also found that tDNA operon location, and the location dependence of expression, were significantly different in the leading and lagging strands. The operonic organization and genomic location of tDNA operons are significant factors influencing their expression. Nonrandom patterns of location and strandedness shown by tDNA operons in E. coli suggest that their genomic architecture may be under selection to satisfy physiological demand for tRNA expression at high growth rates.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 2 4%
United Kingdom 1 2%
Unknown 48 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 24%
Researcher 12 24%
Student > Master 8 16%
Student > Bachelor 6 12%
Professor 4 8%
Other 6 12%
Unknown 3 6%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 51%
Biochemistry, Genetics and Molecular Biology 13 25%
Chemical Engineering 1 2%
Unspecified 1 2%
Environmental Science 1 2%
Other 5 10%
Unknown 4 8%